
123

Chapter 7

7.Managing User Processes

Just as files can use up your available disk space, too many processes going at once can
use up your available CPU time. When this happens, your system response time gets
slower and slower until finally the system cannot execute any processes effectively. If you
have not tuned your kernel to allow for more processes, the system will refuse new
processes long before it reaches a saturation point. However, due to normal variations in
system usage, you may experience fluctuations in your system performance without
reaching the maximum number of processes allowed by your system.

Monitoring User Processes

Not all processes require the same amount of system resources. Some processes, such as
database applications working with large files, tend to be disk intensive, requiring a great
deal of reading from and writing to the disk as well as a large amount of space on the
disk. These activities take up CPU time. Time is also spent waiting for the hardware to
perform the requested operations. Other jobs, such as compiling programs or processing
large amounts of data, are CPU intensive, since they require a great number of CPU
instructions to be performed. Some jobs are memory intensive, such as a process that reads
a great deal of data and manipulates it in memory. Since the disk, CPU, and memory
resources are limited, if you have more than a few intensive processes running at once on
your system, you may see a performance degradation.

As the administrator, you should be on the lookout for general trends in system usage,
so you can respond to them and keep the systems running as efficiently as possible. If a
system shows signs of being overloaded, and yet the total number of processes is low,
your system may still be at or above reasonable capacity. The following sections show
four ways to monitor your system processes.

124

Chapter 7: Managing User Processes

Monitoring Processes With top

The top and gr_top commands are the most convenient utilities provided with IRIX to
monitor the top CPU-using processes on your system. These utilities display the top such
processes dynamically, that is, if a listed process exits, it is removed from the table and
the next-highest CPU-using process takes its place. gr_top graphically displays the same
information as top. If you are using a non-graphics server, you cannot use gr_top locally,
but you can use it if you set the display to another system on the network that does have
graphics capability. For complete information on configuring and using top and gr_top,
consult the top(1) and gr_top(1) reference pages. For information on resetting the display,
see “Displaying Windows on Alternate Workstations” on page 18.

Monitoring Processes With osview

The osview and gr_osview commands display kernel execution statistics dynamically. If
you have a graphics workstation, you can use the gr_osview(1) tool, which provides a
real-time graphical display of system memory and CPU usage. osview provides the same
information in ASCII format. You can configure gr_osview to display several different
types of information about your system’s current status. In its default configuration,
gr_osview provides information on the amount of CPU time spent on user process
execution, system overhead tasks, interrupts, and idle time. For complete information on
osview and gr_osview, see the osview(1) and gr_osview(1) reference pages.

Monitoring Processes With sar

The System Activity Reporter, sar, provides essentially the same information as osview,
but it represents a ‘‘snapshot’’ of the system status, not a dynamic reflection. Because sar
generates a single snapshot, it is easily saved and can be compared with a similar
snapshot taken at another time. You can use sar automatically with cron to get a series of
system snapshots over time to help you locate chronic system bottlenecks by establishing
baselines of performance for your system at times of light and heavy loads, and under
loads of various kinds (cpu load, network load, disk load, and so on). For complete
information on sar, see the sar(1) reference pages. For more information on using sar to
monitor system activity, see “Using timex(1), sar(1), and par(1)” on page 190.

Monitoring User Processes

125

Monitoring Processes With ps

The ps -ef command allows you to look at all the processes currently running on your
system.The output of ps -ef follows the format shown in Table 7-1:

In this table, the process shown is for the user ‘‘joe.’’ In a real situation, each user with
processes running on the system is represented. Each field in the output contains some
useful information.

Name The login name of the user who ’’owns’’ the process.

PID The process identification number.

PPID The process identification number of the parent process that spawned or
forked the listed process.

C Current execution priority. The higher this number, the lower the
scheduling priority. This number is based on the recent scheduling of the
process and is not a definitive indicator of its overall priority.

Time The time when the process began executing. If it began more than 24
hours before the ps command was given, the date on which it began is
displayed.

TTY The TTY (Terminal or window) with which the process is associated.

CPU The total amount of CPU time expended to date on this process. This
field is useful in determining which processes are using the most CPU
time. If a process uses a great deal in a brief period, it can cause a general
system slowdown.

For even more information, including the general system priority of each process, use the
-l flag to ps. For complete information on interpreting ps output, see the ps(1) reference
page.

Table 7-1 Output format of the ps -ef Command

Name PID PPID C Time TTY CPU Time Process

joe 23328 316 1 May 5 ttyq1 1:01 csh

126

Chapter 7: Managing User Processes

Prioritizing Processes With nice

IRIX provides methods for users to force their CPU-intensive processes to execute at a
lower priority than general user processes. The /bin/nice(1) and npri(1M) commands
allow the user to control the priority of their processes on the system. The nice command
functions as follows:

nice [-increment] command

When you form your command line using /bin/nice, you fill in the increment field with a
number between 1 and 19. If you do not fill in a number, a default of 10 is assumed. The
higher the number you use for the increment, the lower your process’ priority will be (19
is the lowest possible priority; all numbers greater than 19 are interpreted as 19). The
csh(1) shell has its own internal nice functions, which operate differently from the nice
command, and are documented in the csh(1) reference page.

After entering the nice command and the increment on your command line, give the
command as you would ordinarily enter it. For example, if the user ‘‘joe’’ wants to make
his costly compile command described in the ps -ef listing above happen at the lowest
possible priority, he forms the command line as follows:

nice -19 cc -o prog prog.c

If a process is invoked using nice, the total amount of CPU time required to execute the
program does not change, but the time is spread out, since the process executes less often.

The superuser (root) is the only user who can give nice a negative value and thereby
increase the priority of a process. To give nice a negative value, use two minus signs before
the increment. For example:

nice --19 cc -o prog prog.c

The above command endows that process with the highest priority a user process may
possess. The superuser should not use this feature frequently, as even a single process
that has been upgraded in priority causes a significant system slowdown for all other
users. Note that /bin/csh has a built-in nice program that uses slightly different syntax
than that described here. For complete information on csh, see the csh(1) reference page.

The npri command allows users to make their process’ priority nondegrading. In the
normal flow of operations, a process loses priority as it executes, so large jobs typically
use fewer CPU cycles per minute as they grow older. (There is a minimum priority, too.
This priority degradation simply serves to maintain performance for simple tasks.) By
using npri, the user can set the nice value of a process, make that process non-degrading,

Monitoring User Processes

127

and also set the default time slice that the CPU allocates to that process. npri also allows
you to change the priority of a currently running process. The following example usage
of npri sets all the possible variables for a command:

npri -h 10 -n 10 -t 3 cc -o prog prog.c

In this example, the -h flag sets the nondegrading priority of the process, while the -n flag
sets the absolute nice priority. The -t flag sets the time slice allocated to the process. IRIX
uses a 10-millisecond time slice as the default, so the example above sets the time slice to
30 milliseconds. For complete information about npri and its flags and options, see the
npri(1) reference page.

Changing the Priority of a Running Process

The superuser can change the priority of a running process with the renice(1M) or npri
commands. Only the superuser can use these commands. renice is used as follows:

renice increment pid [-u user] [-g pgrp]

In the most commonly used form, renice is invoked on a specific process that is using
system time at an overwhelming rate. However, you can also invoke it with the -u flag to
lower the priority of all processes associated with a certain user, or with the -g flag to
lower the priorities of all processes associated with a process group. More options exist
and are documented in the renice(1M) reference page.

The npri command can also be used to change the parameters of a running process. This
example changes the parameters of a running process with npri:

npri -h 10 -n 10 -t 3 -p 11962

The superuser can use renice or npri to increase the priority of a process or user, but this
can severely impact system performance.

Terminating Processes

From time to time a process may use so much memory, disk, or CPU time that your only
alternative is to terminate it before it causes a system crash. Before you kill a process,
make sure that the user who invoked the process will not try to invoke it again. You
should, if at all possible, speak to the user before killing the process, and at a minimum
you should notify the user that the process was prematurely terminated and give a
reason for the termination. If you do this, the user can reinvoke the process at a lower

128

Chapter 7: Managing User Processes

priority or possibly use the system’s job processing facilities (at, batch, and cron) to
execute the process at another time.

To terminate a process, you use the kill command. Typically, for most terminations, you
should use the kill -15 variation. The -15 flag indicates that the process is to be allowed
time to exit gracefully, closing any open files and descriptors. The -9 flag to kill terminates
the process immediately, with no provision for cleanup. If the process you are going to
kill has any child processes executing, using the kill -9 command may cause those child
processes to continue to exist on the process table, though they will not be responsive to
input. The wait(1) command, given with the process number of the child process,
removes them. For complete information about the syntax and usage of the kill
command, see the kill(1) reference page. You must always know the PID of the process
you intend to kill with the kill command.

Killing Processes by Name with the killall(1M) Command

The killall(1M) command allows you to kill processes by their command name. For
example, if you wish to kill the program a.out that you invoked, use the syntax:

killall a.out

This command allows you to kill processes without the time-consuming task of looking
up the process ID number with the ps(1M) command.

Note: This command kills all instances of the named program running under your shell
and if invoked with no arguments, kills all processes on the system that are killable by
the user who invoked the command. For ordinary users, these are simply the processes
invoked and forked by that user, but if invoked by root, all processes on the system will
be killed. For this reason, this command should be used carefully.

